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We consider long strips of finite widthL<13 sites of ferromagnetic Ising spins with random couplings
distributed according to the binary distributionP(Ji j )51/2[d(Ji j2J0)1d(Ji j2rJ0)], 0,r,1. Spin-spin
correlation functionŝs0sR& along the ‘‘infinite’’ direction are computed by transfer-matrix methods, at the
critical temperature of the corresponding two-dimensional system, and their probability distribution is inves-
tigated. We show that, although in-sample fluctuations do not die out as strip length is increased, averaged
values converge satisfactorily. These latter are very close to the critical correlation functions of the pure Ising
model, in agreement with recent Monte Carlo simulations. A scaling approach is formulated, which provides
the essential aspects of theR andL dependence of the probability distribution of ln^s0sR&, including the result
that the appropriate scaling variable isR/L. Predictions from scaling theory are borne out by numerical data,
which show the probability distribution of ln^s0sR& to be remarkably skewed at short distances, approaching
a Gaussian only asR/L@1. @S1063-651X~96!08506-6#

PACS number~s!: 05.50.1q, 05.70.Jk, 64.60.Fr, 75.10.Nr

I. INTRODUCTION

Most studies of random magnetic systems focus on
whether or not quenched disorder destroys a sharp phase
transition and, in the latter case, whether critical exponents
are the same as for the corresponding pure magnets@1–3#.
Less attention has been paid to the underlying probability
distribution functions which govern the behavior of sample-
averaged thermodynamic quantities, and which are expected
to be universal in certain circumstances~see below!. Early
work on probability distributions of correlation functions
concentrated, as numerical applications were concerned, on
strictly one-dimensional systems@4–7#. The behavior, under
renormalization group transformations, of the distribution of,
e.g., conductivities in percolation-resistor networks@8#, or
interactions in spin glasses@9#, has been studied as well.
More recently, the probability distributions of bulk quantities
such as energy, magnetization, specific heat, and susceptibil-
ity of disordered Ashkin-Teller models have been investi-
gated in two dimensions@10# by Monte Carlo simulations.
Bond distribution functions in one-dimensional quantum
spin systems have been revisited very recently@11#.

Here we deal directly with spin-spin correlation functions
on finite-width strips of two-dimensional disordered Ising
systems. The basic motivation for using this geometry is the
fact that strip calculations, in conjunction with finite-size
scaling concepts@12,13# are among the most accurate tech-
niques to extract critical points and exponents for nonrandom
low-dimensional systems@14,15#. The rate of decay of cor-
relation functions determines correlation lengths along the
strip. These latter are, in turn, a key piece of Nightingale’s
phenomenological renormalization scheme@14,15#, and have
been given further relevance via the connection with critical

exponents provided by conformal invariance concepts@16#.
Early extensions of strip scaling to random systems@17#
have since been pursued further@18–20# and put into a
broader perspective. Though this has been done with the help
of ideas arising from the study of probability distributions
@4–7#, the behavior of the probability distributions them-
selves has not been closely investigated in strip geometries.
In particular, their evolution toward the two-dimensional
system’s form as strip width increases has not been analyzed
to our knowledge.

We consider a two-dimensional random-bond Ising model
on a square lattice with a binary distribution of ferromagnetic
interaction strengths, each occurring with equal probability:

P~Ji j !5 1
2 @d~Ji j2J0!1d~Ji j2rJ0!#, 0<r<1. ~1!

For this case, the transition temperaturebc51/kBTc is ex-
actly known from duality@21,22#,

sinh~2bcJ0!sinh~2bcrJ0!51. ~2!

We have studied strips of widthL<13 sites, with periodic
boundary conditions, and lengthN5106 sites. Throughout
this work we fixr51/4 andT5Tc(1/4) as given by Eq.~2!.
Numerically, Tc(1/4)/J051.239... @to be compared with
Tc(1)/J052.269...#. Using this value ofr ensures that dis-
order effects are rather strong, while at the same time one
keeps a safe distance from the percolation regime atr50
~near which crossover to geometry-dominated behavior is
expected to complicate the picture!; this choice also coin-
cides with that used in several recent Monte Carlo simula-
tions @3,23#; thus comparison~when appropriate! is made
easier. The choice ofT5Tc is important, as it is here that the
probability distributions are expected to have a nontrivial
universal form; furthermore, the extensive literature on criti-
cal correlations for pure systems, both making explicit con-
nection to conformal invariance ideas@16# and previous to
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that ~see, e.g., Ref.@24# and references therein!, is an impor-
tant reference frame against which to set our results.

In what follows, we first illustrate the role played by in-
trinsic fluctuations in the probability distribution of correla-
tion functions, and show that even though these do not die
away for large samples, the sample-to-sample fluctuations of
averaged values do go down as sample size increases. Next
we compare our results for averaged critical correlations with
those for a pure system, in order to check on a recent pro-
posal arising from Monte Carlo data@23# which implies
equality, within error bars, of the corresponding quantities.
We then go on to identify the key features of the shape of
distributions, and investigate their variation with distanceR
and strip widthL. A simplified scaling theory is formulated,
which provides the essential aspects of theR andL depen-
dence. Numerical data for the probability distributions of
correlation functions bear out the main predictions of scaling
theory, in particular the role played by the combinationR/L
as an appropriate scaling variable.

II. INTRINSIC FLUCTUATIONS AND AVERAGES

We calculate the spin-spin correlation function
G(R)[^s 0

1s R
1&, between spins on the same row~say, row

1!, andR columns apart, of strips with periodic boundary
conditions along the vertical direction. This is done follow-
ing the lines of Sec. 1.4 of Ref.@15#, with standard adapta-
tions for an inhomogeneous system@19#. At each iteration of
the transfer matrix from one column to the next, the respec-
tive vertical and horizontal bonds between first-neighbor
spins are drawn from the bond probability distribution, Eq.
~1!. By shifting the origin along the strip and accumulating
the corresponding results, one then obtains averages of the
correlation function~or of any functionF of it, such as its
logarithm, which will be of particular importance in what
follows!, to be denoted bŷG& @or ^F(G)&#, theR depen-
dence being implicitly understood. With strips of length
N5106 sites, we are able to produce 1042105 independent
estimates ofG for 7<R<100, which is the range of dis-
tances to concern us here.

Normalized histograms of occurrence of the allowed val-
ues of the correlation function~or, rather more frequent be-
low, of its logarithm! are produced by dividing a convenient
interval of variation ofG ~or lnG! into 103 equal-width bins,
and assigning each particular realization to the appropriate
bin. For lnG the interval ranging from ln 1027 to zero has
proved generally adequate, except forR5100, where the
lower limit was pushed down to ln 10211.

For strictly one-dimensional disordered systems~i.e.,
chains! the average free energy~related to the largest
Lyapunov exponent! has a normal distribution@4,5,7#, as be-
fits a sum of random variables. Thus the fluctuations shrink
with sample size~strip length! N, and relative errors must die
out as 1/AN. Correlation functions, on the other hand, are
products of random variables, thus their distribution tends to
a log-normal form asR→` @4#, that is, the probability dis-
tribution of lnG approaches a Gaussian. However, the analy-
sis of correlation functions turns out to be more complex
than that of the free energy, even on chains; a primary reason
for this is that while the latter quantity is self-averaging in
the sense defined above, the former is not: the usual Brout

argument@25# cannot be applied, as explained, e.g., in Ref.
@5#. The width of the probability distribution of correlation
functions is then expected to be a permanent feature, which
will not vanish ~at least trivially! with increasing sample
size.

We have found that on finite-width strips the width of the
distribution tends to stay essentially constant asN varies. A
graphic illustration is provided in Fig. 1, where the horizon-
tal variable is lnG, which turns out to be convenient for
most purposes~see below!. IncreasingN simply smooths out
the histogram; averages such as^G& or ^ln G& hardly move,
the same being true of the width. This is easier to notice by
comparing the Gaussians fitted to peak at^ln G& and with
width given by the root-mean-square deviation
D~ln G![$Š@ln G2^ln G&#2‹%1/2.

Though neitherD~ln G! orDG vanishes, it is still possible
to extract valuable information from averaged values, the
dispersion of which among independent samples~to be de-
noted, respectively,D^ln G& or D^G& does shrink with in-
creasing sample size. Figure 2 shows the typical dependence
of relative fluctuations,DG/^G& andD^G&/^G&, with strip
lengthN. Varying the numbern of distinct ~that is,N lattice
spacings long! samples within a reasonable interval, say
n55–50, changesD^G& only slightly, consistent with a
1/An dependence to be inferred from standard arguments.
From an investigation ofD^G&/^G& for distances in the
rangeR57–50 and strip widths up toL57, it turns out that
both the order of magnitude andN dependence~roughly
1/AN! depicted in Fig. 2 are typical. The behavior of
D^ln G&/^ln G& is entirely similar. We can thus predict~see
Fig. 2! that the fluctuationsD^ln G&/^ln G& and D^G&/^G&
will be of order 1% or just under that for strips of length
N5106. This will be enough for our purposes here. Similar
considerations have been used elsewhere in strip studies
@20#, and seem to have been followed also in Monte Carlo

FIG. 1. Normalized histograms of occurrence of lnG for L55,
R520. ~a! N5105; ~b! N5106. Full vertical arrows at̂ln G&; bro-
ken vertical arrows at ln̂G&. Curves are Gaussians fitted to mean
and root-mean-square deviation of lnG, as calculated from respec-
tive realizations. Here, and in all subsequent figures,r51/4 and
T5Tc(r ).
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calculations of correlation functions in finite (L3L) systems
@23#.

III. COMPARISON WITH PURE-SYSTEM CRITICAL
CORRELATIONS

It has been found in Monte Carlo simulations@23# that the
average correlation function at criticality of a random-bond
Ising system is numerically very close to that for a pure
system at its own critical point. Below we check on the cor-
responding quantities for the strip geometry.

The spin-spin correlation function for the pure Ising
model atT5Tc on a strip of widthL is known from confor-
mal invariance@16# to vary, for largeR, L as

^s0
1sR

1&;S p/L

sinh~pR/L ! D
h

, h51/4, ~3!

for spins along the same row as is the case here. The propor-
tionality factor can be obtained from the exact square-lattice
(L→`) result @24#, ^s 0

1s R
1&50.703 38/R1/4. In Fig. 3 we

show, forR57 and 20, data for̂G& and exp̂ln G& together
with a continuous curve for the pure system. The latter
passes through numerically calculated points forL<15 @Eq.
~3! is in error by one part in 104 for L515, R57 and less
than that forR520# and follows Eq.~3! for largerL. Using
1/L2 for the horizontal axis guarantees that the pure-system
curve approaches the vertical axis linearly. However, it still
shows high curvature even for the largest values ofL attain-
able in our random-system calculations. This warns us to
refrain from extrapolating our data forL→`. Even so, we
can learn from finite-width results that^G& behaves very
closely to its pure-system counterpart. This is in line with
previous findings@19# according to which in a random sys-
tem the correlation lengthj to be used in the exponent-
amplitude relation of conformal invariance,j5L/ph @16#,
is that obtained from the average decay of^G& againstR.
Thus one gets a picture in whichh51/4 as for the pure
system@19#, consistent withg/n57/4 obtained, e.g., from
strip calculations of the average susceptibility for the random
system@20#, and the scaling relationg/n522h.

Of course the present result reaches further, as one could
conceive of a scenario where the correlations would differ in
the pure and random systems, but decay asymptotically as
R→` with the same rate~thus giving the samej!. In fact,
the decay of exp̂ln G& againstR is not too dissimilar to that
of ^G& for moderate disorder, and for the finite values ofL
within reach of calculation. Only a systematic study of ex-
trapolation trends asL→`, covering different degrees of
disorder, shows how the respective correlation lengths are
essentially distinct@19#. The physical origin of this lies in
that, on account of the properties of the probability distribu-
tion of G ~to be seen in detail below!, the most probable
value exp̂ln G& does not coincide with the average one,^G&
@6,7#. Accordingly, it has been shown by field-theoretic ar-
guments@26# and supported by numerical work@19# that the
most probable, or typical, correlation function decays as

exp̂ ln G&;R21/4~ ln R!21/8, ~4!

while the logarithmic corrections are washed away upon av-
eraging for^G&, resulting in a purely algebraic decay with
h51/4.

Quantitative analysis of the results displayed in Fig. 3
shows that, considering the central estimates^G& the ratio
Q[^G„R,L,r ,Tc(r )…&/G„R,L,1,Tc(1)… is, in all cases,
within 1.0121.03. With estimated error bars of order 1% as
explained in the preceding section, a very small amount of
overshooting seems to persist which does not follow a defi-
nite trend againstR/L ~see Fig. 4!. Monte Carlo data show
the corresponding ratio approaching unity from below as lat-
tice sizeL increases@23#, in the regionR/L!1. We cannot
go far into that region, as the maximum strip widths within
reach are not much larger than 10, and randomness effects
are significantly distorted for smallR&5.

FIG. 2. Relative fluctuations within sample,DG/^G&, and be-
tween sample-averaged values,D^G&/^G&, against strip lengthN.
L57, R520, number of samplesn520.

FIG. 3. Averaged correlation functions forL55, 7, 9, 11, 13.
~a! R57; ~b! R520. Triangles:̂ G&; squares: exp̂ln G&. Errors as
defined in Sec. II. Continuous line: correlation functions for pure
Ising model on strips@16,24#.
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Though we are not able at this point to advance a quanti-
tative argument, it is plausible that finite-size effects mani-
fest themselves differently in strip and square geometries;
taken together with those of Ref.@23#, we interpret our data
as evidence in favour of pure- and random-system critical
correlations being in fact equal, at least forR,L@1 and
R/L!1.

In the next two sections, we exploit the features of the
probability distribution ofG, and show that the variableR/L
is indeed at least approximately the convenient one to de-
scribe several relevant aspects of the problem.

IV. PROBABILITY DISTRIBUTIONS: SCALING THEORY

A. Relevant parameters

Our starting point is the result that, in one dimension and
for largeR the probability distribution ofG must be log-
normal @4–7#. The same is expected to hold on strips pro-
vided thatR/L@1. We seek for deviations from Gaussian
behavior as one moves away from this limit.

In Fig. 5 we show normalized histograms of occurrence of
ln G for fixed L55 andR57, 20 and 50. Though to zeroth
order one could say that all plots look similar to Gaussians,
the semblance is reduced asR decreases.

A quantitative measure of departure from Gaussian be-
havior is the~dimensionless! skewnessS, defined as@27#

S[S ^x2^x&&
s D 3 ~5!

for a distribution with mean̂x& and dispersions. Of course,
for a finite number of realizations of a given probability dis-
tribution S itself will be subject to fluctuations. In what fol-
lows we shall always quoteS with two significant digits,
which will allow us to discern trends while staying reason-
ably within reliable margins. ForL55 andR57, 20, 50 and
100 ~the latter not shown in Fig. 5! one has, respectively,
S520.67,20.41,20.24, and20.19. We shall analyze the

R andL dependence ofS below; for the moment note that it
approaches zero with increasingR, as expected, and is al-
ways negative. This is partly because of the many-channel,
incipiently two-dimensional character of correlations on the
strip: qualitatively, if there is at least one path of ‘‘strong’’
bonds between two spins, their correlation is significant, and
is not much enhanced if there are more strong-bond paths,
thus the peak at large lnG with an abrupt cutoff above the
maximum; on the other hand, configurations without any
strong-bond paths at all are possible but with low probabil-
ity, giving rise to the ‘‘tail’’ of very low lnG values. This
argument explains the general trend towards increasinguSu
for R/L,1 as well~see below!. An extreme example of this
trend is shown in Fig. 6 forL513,R57 whereS520.85.
The negative skewness effect depends also on the variable
against which histograms are plotted: here we use lnG be-
cause our goal is to check on departures from a log-normal
distribution, thus it is the skewness of this plot which matters
in the context. For instance, a plot of the same distribution
against tanh21G would have positive skewness.

We choose to characterize the distribution of lnG by
three quantities, namely, mean~^ln G&!, dispersion, or root-
mean-square deviation@D~ln G!# and skewness (S). In other
words, we assume that the probability distribution of corre-
lation functions is satisfactorily described by perturbative
corrections to a log-normal form. As shown below, this
works well in the present case of ferromagnetic disorder. If
frustration effects are present, such as, e.g., in random-field
@28# or spin-glass systems, it may be necessary to take re-
course to additional parameters, or even to adopt a different
perspective. We shall not deal with this matter in the present
work.

B. Scaling theory

The aspects just described are consistent with a scaling
description given in this section. It leads to further specific

FIG. 4. RatioQ[^G„R,L,r ,Tc(r )…&/G„R,L,1,Tc(1)… against
R/L for points of Fig. 3. Error bars represent estimated fluctuations
of order 1%.

FIG. 5. Normalized histograms of occurrence of lnG for fixed
L55 andR57, 20 and 50. Full vertical arrows at^ln G&; broken
vertical arrows at ln̂G&. Curves are Gaussians fitted to mean and
root-mean-square deviation of lnG, as calculated from respective
realizations.
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predictions regarding the form of distribution functions and
their dependences on the variablesR andL, which will be
discussed subsequently in the light of the numerical results.

The approach combines two main features:~i! the appear-
ance at large scalesL,R@1 of universal aspects related to
fixed point Hamiltonian and probability distributions of the
disordered two-dimensional~2D! Ising model; and~ii ! the
crossover forR.L to width-limited behavior characteristic
of the one-dimensional~1D! version of the large-scale uni-
versal properties.

The procedure is to first scalen times by~length! rescal-
ing factor b, wherebn5L, which takes the system to an
equivalent linear chain. This step involves the scaling of
joint probability distributions for the appropriate variables. If
one starts from the critical condition of the random 2D Ising
system irrelevant variables scale away, and one approaches
asymptotically the fixed point Hamiltonian and distribution
describing the universality class containing the 2D random
Ising system. This involves a minimal set of relevant random
variables$t i

(n)% ~after n scalings! and their universal prob-
ability distributions. The correlation function scales as fol-
lows:

GL~R,$t i%!5b2hGL/b~R/b,$t i
~1!% !

5•••5L2hG1~R/L,$t i
~n!% ! ~n5 ln L/ ln b!.

~6!

We now have an equivalent 1D system with Hamiltonian
close to the fixed point Hamiltonian of the disordered 2D
system. Since the correlations in a 1D system are transmitted
through each intermediate space point, a factorization of
G1(R/L,$t i

(n)%) is suggested ifR/L.1. This factorization is
into R/L factors corresponding to successiveL3L blocks of
the original system~i.e., to single bonds of the renormalized
1D system!, labeled bys51,...,R/L; then Eq.~6! becomes

GL~R,$t i%!5L2h)
s51

R/L

G1~1,$t i
~n!%s!. ~7!

Here, $t i
(n)%s are the renormalized random variables for the

block labeled bys. It will be assumed later that these are
largely uncorrelated from one blocks to another, since the
blocks were initially nonoverlapping. This, and the other ap-
proximations leading to the approximate form Eq.~7! will be
tested by later comparison to the numerical results. Equation
~7! generalizes a result for the pure case. There, forR/L
large,G1(R/L,...t* ...)}(l2/l1)

R/L, wherel2/l1 is a uni-
versal ratio of eigenvalues of the transfer matrix of the uni-
versal fixed point Hamiltonian of the pure 2D Ising class.
Then

GL~R,t* !}L2h exp@2R/jL#, ~8!

wherej L
2151/L ln~l1/l2! ~5ph/L @16#!. It is perhaps inter-

esting that the simplestb52 Migdal-Kadanoff real-space
renormalization group transformation gives
G1(R/L,t* )5(t* )R/L, t*50.544, hence it givesh;0.19.
This unsatisfactory representation of the universalh in terms
of a nonuniversalt* is due to not having allowed the Hamil-
tonian to adopt its universal form.

We now return to the disordered case and consider the
development of the probability distributions during the res-
calings leading to Eq.~6!. To allow for correlations it is
necessary to consider the probability distributionPt$t i% for
the whole set oft i ’s. This is labeled by a parametert setting
the scale for all thet i ’s. The scaling of the distribution is
given by a mappingWb :

Pt~ l11!
~ l11!

$t i%5WbˆPt~ l !
~ l ! $t i%‰5Wb

l
ˆPt~0!

~0!
$t i%‰, ~9!

where l , l11 label two successive steps, andWb
l denotesl

iterations of the map. The parametert also scales according
to a renormalization group transformation characteristic of
the 2D random Ising model. At the fixed pointt* of that
transformation, aftern5ln L/ln b scalings withn large,Wb

n

will have produced a distributionPt*
(n) close to the universal

invariant distributionPt*
* of the random 2D Ising model,

which satisfies the fixed point equation

Pt*
* $t i%5WbˆPt*

* $t i%‰. ~10!

Then, employing Eq.~7! and taking logarithms to obtain a
sum of random variables on the right-hand side we find that
at t* , after n scalings, the probability distributionP ~a! for
ln GL @i.e., for the probability that lnGL(R,$t i%) takes the
valuea# is given by

E da exp~ba!P ~a!

5E S) dti DPt*
~n!$t i%

3exp~2bh ln L !)
s51

R/L

exp@b ln G1~1,$t i%s#. ~11!

FIG. 6. Normalized histogram of occurrence of lnG for L513
andR57. Full vertical arrow at̂ ln G&; broken vertical arrow at
ln^G&. Curve is Gaussian fitted to mean and root-mean-square de-
viation of lnG, as calculated from respective realization. Skewness
520.85.
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If n is large, as well asPt*
(n);Pt*

* , we haveG1(1,$t i%s) close
to a universal function characteristic of the random 2D Ising
class, since the renormalized bond regions labeled by eachs
are each a composition of many original bonds, att* .

To the extent that the probability distributionPt*
(n) factor-

izes into partsqt*
(n)$t i%s corresponding to the differents’s ~to

be tested! the result Eq.~11! reduces to a form corresponding
to the probability of a sum of random variables~ln G1!:

E da exp~ba!P ~a!5exp~2bh ln L !@ I ~n!~b!#R/L,

~12!

with

I ~n!~b!5E S) dti D
s

qt*
~n!$t i%s exp@b ln G1~1,$t i%s!#,

~13!

where the subscripts indicates that allt i ’s are in the region
corresponding to a givens.

We now explore the consequences of the above results,
and in particular the expected universality ofqt*

(n) ,
G1(1,$t i%s) for L (5bn) large, for the distributionP ~a! for
ln GL(R,$t i%s).

Equation~12! shows thatP ~a2h ln L! corresponds to the
probability distribution for a sum ofR/L independent ran-
dom variables@ln G1(1,$t i%s)#, and has the consequence that,
if R/L is large,P ~a! approaches a Gaussian distribution with
mean, width, and skewness given by

^a&5SRL Dm2h ln L, ~14!

Š~a2^a&!2‹1/25SRL D 1/2w, ~15!

Š~a2^a&!3‹/Š~a2^a&!2‹3/25SRL D 21/2

s. ~16!

The quantitiesm, w, and s are characteristics ofI (n)(b),
which is related as follows to the~non-Gaussian! distribution
function Q(n)(a) for the logarithm of the nearest-neighbor
correlation function of the~n-times rescaled! disordered 2D
Ising system:

I ~n!~b!5E da exp~ba!Q1
~n!~a!, ~17!

with

Q1
~n!~a!5E S) dti D

s

qt*
~n!$t i%sd„a2 ln G1~1,$t i%s!….

~18!

For L5bn large, all these quantities and thereforem, w, and
s will become universal~characteristic of the 2D random
Ising class!.

The universal character at largeL of the distributionP ~a!
for ln GL(R) at t* , its Gaussian form at largeR/L, and the
results~14!–~16! and their interpretation above, are the main

conclusions of this section. Note~a! that these conclusions
include the result of Ref.@4# for the 1D case and~b! that the
analogue ofm for the pure case is the universal constant
2ph ~while w, s are zero!.

The essential points of the general discussion given above
can be explicitly illustrated in the simple scenario provided
by the renormalization group approach~blocking-
decimation!, allowing for just the random variables
$t i[tanhbJi%. This forces the Hamiltonian to remain of
Ising form @so the reservation expressed under Eq.~8! ap-
plies#. We allow for spin rescaling, and for the distribution
function g(t i) for each t i to develop towards fixed point
universal form under the scaling@8,9#, but we ignore corre-
lations. ThenG1(1,$t i%) is just the renormalized variable
t i
(n). The scaling oft i will be of the form

t i
~ l11!5Rb$t i

~ l !%, ~19!

where the right-hand side is a function ofNb variablest i
( l )

comprising the block. Then the distributiong( l )(t i
( l )) scales

according to the following simplified version of Eq.~9!:

gt~ l11!
~ l11!

~ t8!5E S )
i51

Nb

dtigt~ l !
~ l !

~ t i !D d~ t82Rb$t i
~ l !% !, ~20!

and t ( l )→t ( l11) is the resulting change of scale of the distri-
butiong. No scale change occurs if the initial distribution is
set at the critical value oft (0). Then, for largel , Eq. ~20!
gives the asymptotic approach to the universal fixed point
distribution, from whichm, w, s can be obtained. For an
adequate description of this sort, the transformation Eq.~19!
should give the proper zero value of the exponenta for the
pure case: via the Harris criterion this makes the disorder
marginally relevant and ensures that the widthw does not
scale away. It requiresNb5l b

2, wherelb5b1/n is the eigen-
value of the pure version of Eq.~19!, linearized about its
fixed point. Procedures of this sort give~i! m not very dif-
ferent from its pure value; and~ii ! negative skewnesss.

V. NUMERICAL RESULTS AND CONTACT
WITH THE SCALING THEORY

We begin by recalling that the results exhibited in Fig. 2
point out the importance of intrinsic widths in the critical
random system~i.e., at t* !. This is a central feature of the
scaling theory, through the appearance of universal distribu-
tions. Secondly, we recall that Fig. 5 provides evidence for
Gaussian distributions for lnG at largeR, with narrowing
relative widths asR increases. This is again a prediction of
the scaling theory@see Eq.~14! and the discussion preceding
it#.

The results already presented in Fig. 3 show that the over-
all dependence of exp^ln G& on L for fixedR approximately
mimics that of^G&, apart from a proportionality factor. The
latter is, in turn, numerically very close~see Fig. 4! to that of
the pure system, given to good approximation by Eq.~3!.
The proportionality factor is, however,R dependent, as illus-
trated in Fig. 7; this illustrates that, though both quantities
decay exponentially withR as befits an essentially one-
dimensional system, their respective correlation lengths dif-
fer, with well-known consequences@6,7,19#. The linear de-
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pendence of^ln G&[a againstR is consistent with the
scaling result~14!.

Also, at largeR, the slope of the measureda versusR line
is proportional to 1/L, in agreement with the (R/L)m term
dominant in Eq.~14!; and the coefficient is consistent with
havingm not far from its pure value. The comparison of
numerical results for̂ ln G& and ^G& with corresponding
pure forms is given in Fig. 8, whereGpure is given by Eq.~3!
above.

A further, rather stringent test of the scaling predictions is
the plot in Fig. 9 of numerical data forD~ln G! againstR/L.
It can be seen that the (R/L)1/2 dependence Eq.~15! is rea-
sonably followed in the largeR/L regime where it was de-
rived; and the data collapse of results for differentR, L sug-

gests thatR/L is ~as predicted! the appropriate scaling
variable in the regime of largeR, L independent of their
ratio. The curve also gives evidence of the crossover to the
universal width of the 2D random Ising system forL*R@1.

In order to further test the scaling theory, and the sugges-
tion thatR/L is the appropriate scaling variable, we show in
Fig. 10 numerical results for the skewness againstR/L.
Again the data collapse is satisfactory. The prediction of
(R/L)21/2 behavior @Eq. ~16!# for large R/L is again ob-
served, and the crossover towards universal 2D behavior is
seen forL*R@1.

VI. CONCLUSIONS

We have studied properties of the probability distributions
of correlation functions on finite-width strips of the two-
dimensional random-bond Ising model at criticality. We
have shown that even though intrinsic fluctuations in the
probability distribution do not die away for large samples,
the sample-to-sample fluctuations of averaged values do go
down approximately with the square root of sample size as

FIG. 7. Semilog plot of decay of̂ln G& and ln̂G& against dis-
tance for fixedL55. Broken line gives slope as predicted by con-
formal invariance (L/j5ph) with h51/4.

FIG. 8. Log-log plot of ratio between averaged correlation func-
tions andGpure againstR/L, the latter as given in Fig. 3@16,24#.
Triangles: data from̂G&; squares: data from̂ln G&.

FIG. 9. Log-log plot of widthD~ln G! against distanceR/L.
Line has slope 1/2.

FIG. 10. Log-log plot of negative skewness2S againstR/L.
Line has slope21/2.
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the latter increases. Results thus obtained for averaged criti-
cal correlations have been compared with those for a pure
system, and we have found that the values of averaged cor-
relations ^G& are very close to the corresponding pure-
system ones, consistent with recent Monte Carlo data@23#.
The key features of the shape of distributions have been
identified, and a simplified scaling theory has been formu-
lated, which provides the essential aspects of theR and L
dependence. Numerical data for the probability distributions
of correlation functions bear out the main predictions of scal-
ing theory, in particular the role played by the combination
R/L as an appropriate scaling variable.

We expect the approach outlined above, which consists in
describing the probability distribution of lnG by perturba-
tive corrections to a log-normal form„thus characterized by
only three quantities, namely, mean~^ln G&!, width
@D~ln G!#, and skewness (S)… to be appropriate in the present

case of ferromagnetic disorder; it remains to be checked
whether additional parameters, or even a change of perspec-
tive, will be necessary if frustration effects are present, e.g.,
in random-field@28# or spin-glass systems. We plan to un-
dertake this task as a continuation of the present work.
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